首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   29篇
  国内免费   7篇
  2024年   1篇
  2023年   6篇
  2022年   3篇
  2021年   13篇
  2020年   15篇
  2019年   13篇
  2018年   15篇
  2017年   8篇
  2016年   11篇
  2015年   12篇
  2014年   14篇
  2013年   19篇
  2012年   12篇
  2011年   23篇
  2010年   8篇
  2009年   13篇
  2008年   17篇
  2007年   12篇
  2006年   13篇
  2005年   16篇
  2004年   7篇
  2003年   13篇
  2002年   7篇
  2001年   6篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
排序方式: 共有299条查询结果,搜索用时 31 毫秒
61.
ABSTRACT

Glycosaminoglycans (GAGs) such as hyaluronan and chondroitin in animal extracellular matrices contain disaccharide-repeating units. In a Gram-negative pathogenic Streptobacillus moniliformis, which belongs to Fusobacteria phylum and resides in rodent oral cavities, the solute-binding protein (Smon0123)-dependent ATP-binding cassette transporter imports unsaturated hyaluronan/chondroitin disaccharides into the cytoplasm after GAG lyase-dependent depolymerization. Here we show substrate recognition of unsaturated hyaluronan disaccharide by Smon0123. Moreover, Smon0123 exhibited no affinity for unsaturated chondroitin disaccharides containing three sulfate groups, distinct from non-sulfated, mono-sulfated, and di-sulfated chondroitin disaccharides previously identified as substrates. Crystal structure of Smon0123 with unsaturated hyaluronan disaccharide demonstrates that several residues, including Trp284 and Glu410, are crucial for binding to unsaturated hyaluronan/chondroitin disaccharides, whereas arrangements of water molecules at binding sites are found to be substrate dependent through comparison with substrate-bound structures determined previously. These residues are well conserved in Smon0123-like proteins of fusobacteria, and probably facilitate the fusobacterial residence in hyaluronan-rich oral cavities.  相似文献   
62.
Glioblastoma multiforme (GBM) is the deadliest form of primary brain tumor. GBM tumors are highly heterogeneous, being composed of tumor cells as well as glioblastoma stem cells (GSCs) that contribute to drug resistance and tumor recurrence following treatment. To develop therapeutic strategies, an improved understanding of GSC behavior in their microenvironment is critical. Herein, we have employed three-dimensional (3D) hyaluronic acid (HA) hydrogels that allow the incorporation of brain microenvironmental cues to investigate GSC behavior. U87 cell line and patient-derived D456 cells were cultured as suspension cultures (serum-free) and adherently (in the presence of serum) and were then encapsulated in HA hydrogels. We observed that all the seeded single cells expanded and formed spheres, and the size of the spheres increased with time. Increasing the initial cell seeding density of cells influenced the sphere size distribution. Interestingly, clonal expansion of serum-free grown tumor cells in HA hydrogels was observed. Also, stemness marker expression of serum and/or serum-free grown cells was altered when cultured in HA hydrogels. Finally, we demonstrated that HA hydrogels can support long-term GSC culture (up to 60 days) with retention of stemness markers. Overall, such biomimetic culture systems could further our understanding of the microenvironmental regulation of GSC phenotypes.  相似文献   
63.
Thermo-sensitive semi-IPN hydrogels were prepared via in situ copolymerization of N-isopropylacrylamide (NIPAAm) with poly(ethylene glycol)-co-poly(ε-caprolactone) (PEG-co-PCL) macromer in the presence of sodium alginate by UV irradiation technology. The effects of the sodium alginate content, temperature, and salt on the swelling behavior of the as-obtained hydrogels were studied. The results showed that the swelling ratio of the hydrogels increased with the increasing sodium alginate content at the same temperature, and decreased with the increase in temperature. The salt sensitivity of the semi-IPN hydrogels was dependent on the content of sodium alginate introduced in the hydrogels. The mechanical rheology of the hydrogels and in vitro release behavior of bovine serum albumin (BSA) in situ encapsulated within the hydrogels were also investigated. It was found that the introduction of sodium alginate with semi-IPN structure improved mechanical strength of the hydrogels and the cumulative release percentage of BSA from the hydrogels. Such double-sensitive semi-IPN hydrogel materials could be exploited as potential candidates for drug delivery carriers.  相似文献   
64.
65.
CD44 is the principle transmembrane receptor for the extracellular matrix glycosaminoglycan, hyaluronan. This receptor: ligand interaction is required for many normal cellular processes including lymphocyte homing into inflammatory sites, assembly of a pericellular matrix during chondrogenesis, wound healing and tissue morphogenesis during development. In order to mediate these diverse events, CD44 expressing cells must be able to regulate, and respond to, interactions with hyaluronan. The mechanisms responsible have been subject to scrutiny over the past few years as it has become clear that their disruption can underlie the progression of both metastatic tumours and chronic inflammatory diseases. Here we describe recent data identifying discrete regions within the transmembrane and cytoplasmic domains of CD44 which regulate this important adhesion receptor.  相似文献   
66.
Insoluble (cell-bound) dextransucrase from Leuconostoc mesenteroides B-1299 was encapsulated in highly elastic and stable hydrogels formed by polyvinyl alcohol. The gelation was carried out by controlled partial drying at room temperature, resulting in lens-shaped particles, called LentiKats. A similar recovery of activity (approximately 55%) was achieved when compared with entrapment in calcium alginate gels. Under reaction conditions, the protein leakage in LentiKats was reduced from 18% to 4% by pre-treatment of the dextransucrase with glutaraldehyde. The immobilized dextransucrases were tested in the acceptor reaction with methyl α-D-glucopyranoside. The conversion to oligosaccharides using Lentikat-dextransucrase was higher than that obtained for alginate-dextransucrase, probably due to the reduction of diffusional limitations derived from its lenticular shape. In addition, a shift of selectivity towards the synthesis of oligosaccharides containing α(1→2) bonds was observed for the Lentikat-biocatalysts. These non-digestible compounds are supposed to be specifically fermented by beneficial species of the human microflora (prebiotic effect). The Lentikat-entrapped dextransucrase can be efficiently reused in this process at least for five cycles of 24 h.  相似文献   
67.
Imaging of implanted hydrogel‐based biosystems usually requires indirect labeling of the vehicle or cargo, adding complexity and potential risk of altering functionality. Here, for the first time, it is reported that incorporation of genipin into the design of immunoisolation devices can be harnessed for in vivo imaging. Using cell‐compatible in situ cross‐linking reactions, a fast, efficient and noncytotoxic procedure is shown to maximize fluorescence of microcapsules. Moreover, genipin is validated as a quantitative imaging probe by injecting increasing doses of microcapsules in the subcutaneous space of mice, obtaining strong, stable fluorescence with good linearity of signal to microcapsule dose over several weeks. This allows immediate assessment of the actual injected dose and monitoring of its position over time, thereby significantly enhancing the efficacy and biosafety of the therapy. These outcomes may facilitate clinical translation and optimize medical applications of multiple hydrogel‐based biotechnologies.   相似文献   
68.
The role of hyaluronan (HA) in periodontal healing has been speculated via its interaction with the CD44 receptor. While HA-CD44 interactions have previously been implicated in numerous cell types; effect and mechanism of exogenous HA on periodontal ligament (PDL) cells is less clear. Herein, we examine the effect of exogenous HA on contractility and migration in human and murine PDL cells using arrays of microposts and time-lapse microscopy. Our findings observed HA-treated human PDL cells as more contractile and less migratory than untreated cells. Moreover, the effect of HA on contractility and focal adhesion area was abrogated when PDL cells were treated with Y27632, an inhibitor of rho-dependent kinase, but not when these cells were treated with ML-7, an inhibitor of myosin light chain kinase. Our results provide insight into the mechanobiology of PDL cells, which may contribute towards the development of therapeutic strategies for periodontal healing and tissue regeneration.  相似文献   
69.
Herein, a facile, one‐step hydrothermal route to synthesize novel all‐carbon‐based composites composed of B‐doped graphene quantum dots anchored on a graphene hydrogel (GH‐BGQD) is demonstrated. The obtained GH‐BGQD material has a unique 3D architecture with high porosity and large specific surface area, exhibiting abundant catalytic active sites of B‐GQDs as well as enhanced electrolyte mass transport and ion diffusion. Therefore, the prepared GH‐BGQD composites exhibit a superior trifunctional electrocatalytic activity toward the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction with excellent long‐term stability and durability comparable to those of commercial Pt/C and Ir/C catalysts. A flexible solid‐state Zn–air battery using a GH‐BGQD air electrode achieves an open‐circuit voltage of 1.40 V, a stable discharge voltage of 1.23 V for 100 h, a specific capacity of 687 mAh g?1, and a peak power density of 112 mW cm?2. Also, a water electrolysis cell using GH‐BGQD electrodes delivers a current density of 10 mA cm?2 at cell voltage of 1.61 V, with remarkable stability during 70 h of operation. Finally, the trifunctional GH‐BGQD catalyst is employed for water electrolysis cell powered by the prepared Zn–air batteries, providing a new strategy for the carbon‐based multifunctional electrocatalysts for electrochemical energy devices.  相似文献   
70.
Cell‐laden microfluidic hydrogels find great potential applications in microfluidics, tissue engineering, and drug delivery, due to their ability to control mass transport and cell microenvironment. A variety of methods have been developed to fabricate hydrogels with microfluidic channels, such as molding, bioprinting, and photopatterning. However, the relatively simple structure available and the specific equipment required limit their broad applications in tissue engineering. Here, we developed a simple method to fabricate microfluidic hydrogels with helical microchannels based on a helical spring template. Results from both experimental investigation and numerical modeling revealed a significant enhancement on the perfusion ability and cell viability of helical microfluidic hydrogels compared to those with straight microchannels. The feasibility of such a helical spring template method was also demonstrated for microfluidic hydrogels with complex three‐dimensional channel networks such as branched helical microchannels. The method presented here could potentially facilitate the development of vascular tissue engineering and cell microenvironment engineering. Biotechnol. Bioeng. 2013; 110: 980–989. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号